ORACLE: A DVH-based inverse planning system for LDR prostate brachytherapy using MC dosimetry (Abstract Id: 141)

Speaker:	Konstantinos A. MOUNTRIS, Ph.D. [<u>www.mountris.org</u>]
Institution:	LaTIM U1101, Brest FRANCE
Co-authors:	Julien BERT, Nicolas BOUSSION, Antoine VALERI, Ulrike SCHIK, and Dimitris VISVIKIS
Date:	16 th October 2017

□ Minimally invasive

□ Confined dose to the prostate

Reduced dose at organs at risk

HDR - LDR

LDR Inverse Planning State-of-the-art

Objective

Determine the *optimal* seeds' locations out of a pool of possible candidates

Optimization problem

Given Cost Function (CF) f, minimize $f(d_i)$ over $\{d_i \mid i: seeds' configuration\}$ i.e. find $\mathbf{d}_0 \in \{d_i \mid i: seeds' configuration\}$ s.t. $f(d_0) \leq f(d_i), \forall i$

Optimization method

Fast Simulated Annealing (FSA)² Dose distribution (*Di*) calculated using AAPM TG-43³

Candidate seeds positions

Optimality is compromised by the TG-43

² Pouliot, J., et al. 1996. International Journal of Radiation Oncology * Biology * Physics
³ Nath, R., et al. 1995. Medical physics

ORACLE (<u>Optimized</u> b<u>rac</u>hytherapy p<u>l</u>anning syst<u>e</u>m)

 Optimization using DVH-based FSA (improving state-of-the-art)

GPU Monte Carlo dosimetry (GGEMS platform)⁴⁻⁶

⁴Bert et al. 2016, IEEE NSS-MIC ⁵Lemaréchal et al. 2015, Phys. Med. Biol. ⁶Bert et al. 2013, Phys. Med. Biol.

ORACLE key concepts

 \blacktriangleright Single-seed MC dose map pre-calculation \triangleleft

 \blacktriangleright DVH-based FSA optimization \checkmark

Single-seed MC dose map pre-calculation

STM1251 seed phasespace

e.g. N_{seeds} =60: 400-600 single-seed dose maps \rightarrow **15-20 s** on NVIDIA GTX Titan X

⁷Bealieu, L., et al, 2012. *Medical Physics* ⁸ Bethesda, MD., 1992. ICRU report 46 ⁹ Valentin, J., 2002. Annals of the ICRP

©;^∖MI Inserm

DVH-based FSA optimization

Direct optimization of V_i , D_j metrics (*specified by AAPM TG-137*)

$$CF = w\Theta(V_{100_{LB}} - V_{100}) \cdot (V_{100_{LB}} - V_{100}) + \sum^{i} w\Theta(V_{i} - V_{i_{HB}}) \cdot (V_{i} - V_{i_{HB}}) + \sum^{j} w\Theta(D_{j} - D_{j_{HB}}) \cdot (D_{j} - D_{j_{HB}}) + wN_{needles}$$

$$i = \{150, 200\}$$

 $j = \{10, 30, 2cc, 0.1cc\}$

000

DVH-based FSA optimization

Annealing schedule
$$\rightarrow T(k) = T(k-1) \times (1 - CR)$$

T: Annealing temperature, $T(0) = 10^5$ degrees *CR:* Cooling Rate, *CR* = 0.2%

CF minimization after 13802 iterations \rightarrow 15 s

Comparison with clinical plans (Database: **18** patients)

Organ	Metric	TG-137
	$V_{100}(\%)$	>95
Drestata	$V_{150}(\%)$	≤50
Prostate	V ₂₀₀ (%)	≤20
	D ₉₀ (Gy)	≥145.0
Lucther	D ₁₀ (Gy)	<217.5
Urethra	D ₃₀ (Gy)	<188.5
Deatum	$D_{2cc}(Gy)$	<145.0
Kectum	$D_{0.1cc}(Gy)$	<217.5

Organ	Metric	TG-137	Clinical
	$V_{100}(\%)$	>95	96.8 ± 1.5
Drestata	V ₁₅₀ (%)	≤50	49.0 ± 4.0
Prostate	V ₂₀₀ (%)	≤20	20.7 ± 2.2
	D ₉₀ (Gy)	≥145.0	161.6 ± 4.9
I Incethered	D ₁₀ (Gy)	<217.5	184.6 ± 8.5
Urethra	D ₃₀ (Gy)	<188.5	171.3 ± 4.5
Desture	$D_{2cc}(Gy)$	<145.0	109.4 ± 10.3
Rectum	$D_{0.1cc}(Gy)$	<217.5	156.6 ± 14.8
Seeds			64 ± 7
Needles			18 ± 2

Comparison with clinical plans (Database: **18** patients)

Organ	Metric	TG-137	Clinical	Clinical - MC
	$V_{100}(\%)$	>95	96.8 ± 1.5	94.7 ± 2.3
Drostata	$V_{150}(\%)$	≤50	49.0 ± 4.0	44.8 ± 4.8
Prostate	V ₂₀₀ (%)	≤20	20.7 ± 2.2	18.7 ± 2.5
	D ₉₀ (Gy)	≥145.0	161.6 ± 4.9	156.7 ± 6.4
I Inothero	D ₁₀ (Gy)	<217.5	184.6 ± 8.5	172.7 ± 8.9
Orethra	D ₃₀ (Gy)	<188.5	171.3 ± 4.5	159.7 ± 5.7
Dectum	$D_{2cc}(Gy)$	<145.0	109.4 ± 10.3	108.1 ± 10.9
Kectum	$D_{0.1cc}(Gy)$	<217.5	156.6 ± 14.8	153.6 ± 15.7
Seeds			64 ± 7	
Needles			18 ± 2	

Comparison with clinical plans (Database: **18** patients)

Organ	Metric	TG-137	Clinical	Clinical - MC	ORACLE
	$V_{100}(\%)$	>95	96.8 ± 1.5	94.7 ± 2.3	96.6 ± 1.0
Drostata	V ₁₅₀ (%)	≤50	49.0 ± 4.0	44.8 ± 4.8	46.0 ± 2.7
Prostate	V ₂₀₀ (%)	≤20	20.7 ± 2.2	18.7 ± 2.5	19.6 ± 0.5
	D ₉₀ (Gy)	≥145.0	161.6 ± 4.9	156.7 ± 6.4	162.4 ± 3.8
Lucther	D ₁₀ (Gy)	<217.5	184.6 ± 8.5	172.7 ± 8.9	177.3 ± 11.8
Orethra	D ₃₀ (Gy)	<188.5	171.3 ± 4.5	159.7 ± 5.7	165.0 ± 9.2
Desture	$D_{2cc}(Gy)$	<145.0	109.4 ± 10.3	108.1 ± 10.9	108.7 ± 7.8
Rectum	$D_{0.1cc}(Gy)$	<217.5	156.6 ± 14.8	153.6 ± 15.7	166.7 ± 21.2
Seeds			64 ± 7		64 ± 5
Needles			18 ± 2		17 ± 2

Comparison with clinical plans (Database: **18** patients)

Prostate DVH comparison

Urethra DVH comparison

Rectum DVH comparison

15 / 17

Contributions

- > Intra-operative MC dosimetry in LDR brachytherapy inverse planning ($\approx 15-20$ s) <
- Fast & Robust inverse planning based on DVH optimization (15 s)
- No learning curve in inverse planning

Perspectives

Consideration of edema – Biomechanics in treatment planning¹⁰
 Adaptation in HDR brachytherapy

Acknowledgements

This work was partly supported by the French Brittany Region and by the French ANR within the Investissements d'Avenir program (Labex CAMI) under reference ANR-11-LABX-0004 (Integrated project CAPRI) and through the FOCUS project (ANR-16-CE19-0011).

This work is part of a project that has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 691203.

